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Abstract. The double exchange (DE) model with quantum local spinsS is studied; an equation
of motion approach is used and decoupling approximations analogous to Hubbard’s are made. Our
approximate one-electron Green functionG is exact in the atomic limit of zero bandwidth for all
S and band fillingn. Since asn → 0 it reduces to the result of a dynamical coherent potential
approximation (CPA) due to Kubo, we regard our approximation as a many-body generalization
of Kubo’s CPA.G is calculated self-consistently for generalS in the paramagnetic state and for
S = 1/2 in a state of arbitrary magnetization. The electronic structure is investigated and four
bands per spin are obtained centred on the atomic limit peaks of the spectral function. A resistivity
formula appropriate to the model is derived from the Kubo formula and the paramagnetic state
resistivityρ is calculated; insulating states are correctly obtained atn = 0 andn = 1 for strong
Hund coupling. Our prediction forρ is much too small to be consistent with experiments on
manganites so we agree with Milliset al that the bare DE model is inadequate. We show that the
agreement with experiment obtained by Furukawa is due to his use of an unphysical density of
states.

1. Introduction

Manganite compounds exhibiting colossal magnetoresistance (CMR) are of the form
La1−xDxMnO3 with D divalent, e.g. Ca, Sr, Ba. As the dopingx and temperatureT are varied,
a rich variety of phases are observed, as discussed by Ramirez [1]. Recently there has been a
lot of interest in these compounds withx & 0.15 owing to their interesting magnetotransport
properties in this regime: asT is decreased they undergo a transition to ferromagnetic order, and
near the Curie temperatureTC theT -dependence of the resistivityρ changes from insulating
(∂ρ/∂T < 0 for T > TC) to metallic (∂ρ/∂T > 0 for T < TC), with a strong peak inρ at the
crossover. The application of a strong (∼ 5 T) magnetic field substantially reduces this peak
in ρ and shifts it to higher temperature, giving rise to a very large negative magnetoresistance.
The physical processes causing this behaviour have been the subject of much discussion.

The simplest model proposed for the CMR compounds—the one that we will study in this
paper—is Zener’s [2] double exchange (DE) model with Hamiltonian

H =
∑
ijσ

tij c
†
iσ cjσ − J

∑
i

ESi · Eσi = H0 +H1. (1)

Herei andj refer to sites of the (approximately) simple cubic lattice of Mn atoms,cjσ (c†
iσ ) is

aσ -spin conduction electron annihilation (creation) operator,ESi is a local spin operator,Eσi is a
conduction electron spin operator,tij is the hopping integral with discrete Fourier transformtEk,
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andJ > 0 is the Hund’s rule coupling constant. The number of conduction electrons per atom
n is assumed to be given byn = 1− x. Physically, the relevant electrons are those coming
from the Mn atoms’ 3d shells, which contain four electrons per site in the undoped compounds
and are split by the cubic crystal field into triply degeneratet2g levels and higher energy doubly
degenerateeg levels. Strong Hund coupling attempts to align all electron spins on a site, so
the t2g electrons are treated as localizedS = 3/2 spins while the conduction band is formed
from theeg states. The main physical effects neglected byH are the double degeneracy of the
eg conduction band, impurity atom (D) disorder scattering, and coupling to the lattice degrees
of freedom.

Furukawa [3] has studied the infinite dimensional limit ofH for S = ∞ using dynamical
mean field theory, and has concluded that the DE model’s predictions forρ in the paramagnetic
state are compatible with experiment. Milliset al [4,5] however have claimed thatρ predicted
by the DE model is much smaller than that measured, and that to get agreement with experiment
dynamical Jahn–Teller phonon coupling must be included inH . Experiments show that phonon
coupling is important, with for example a large shift inTC observed upon replacing some of
the O atoms with a different isotope [6], so Furukawa’s claim is puzzling. In this paper we
will study the one-electron local Green functionG and calculateρ in an attempt to reconcile
the results of Millis and Furukawa. This work has been briefly summarized elsewhere [7, 8]
and is discussed in more detail by Green [9].

Our starting point is Kubo’s calculation based on a dynamical coherent potential
approximation (CPA). For finite local spinsS dynamical scattering processes may occur in
which local spins and conduction electrons exchange angular momentum, whereas in the
classicalS →∞ limit taken by most authors the local spins are rigid andH is a one-electron
Hamiltonian with spin dependent diagonal disorder. Kubo’s CPA is an extension of the familiar
alloy CPA which takes these dynamical processes into account in a local approximation. Since
it is a one-electron theory, Kubo’s approximation is only valid in the low-densityn→ 0 limit.
In this limit the behaviour of the spectral function is qualitatively correct with bands with
the correct weights forming about the two atomic limit (tij → 0) peaks as the hoppingtij is
switched on. IfJ � tij double occupation of a site is forbidden so that at half-filling (n = 1)
the system should be a Mott insulator. This is not the case in Kubo’s CPA where the Fermi
level lies within the lower band. The correct behaviour will be obtained in an approximation
which becomes exact in the atomic limit for all filling, so we are looking for a many-body
extension of Kubo’s CPA, valid for alln, which reduces to Kubo’s CPA asn→ 0 and to the
correct atomic limit astij → 0, for all n.

It is difficult to extend the usual CPA method to the many-body case. Instead we return
to the original approach of Hubbard [10] in which he applied the equation of motion method
to calculate the one-electron local Green functionG for the Hubbard model. His decoupling
approximation was motivated by the alloy analogy in which electrons of one spin are considered
as frozen on atomic sites. Hubbard’s ‘scattering correction’ is equivalent to a CPA treatment
of the alloy analogy [11] and his ‘resonance broadening correction’ was an attempt to restore
some dynamics to the frozen electrons. The idea of↓ spins being frozen in the calculation of
the↑ spin Green functionG↑ is introduced in the equation of motion method by neglecting
commutators of the kinetic part of the HamiltonianH0 with ↓-spin occupation numbers.

In the derivation of our approximation toG for the DE model we will make approximations
analogous to those used by Hubbard to obtain the scattering correction; terms corresponding to
his resonance broadening correction will be neglected. Our method represents a considerable
extension of Hubbard’s owing to the more complicated form of the interaction term of the DE
model, which for instance allows electrons to change spin via exchange of angular momentum
with the local spins. This effect couples the equations forG↑ andG↓ which may perhaps be
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regarded as including some resonance broadening effects. Our choice of approximations will
be guided by the requirement that we recover Kubo’s CPA asn → 0 and the correct atomic
limit as tij → 0. Owing to the spin symmetry ofH we only need to derive an equation for
G↑, and the equation forG↓ follows immediately.

We calculate the atomic limit Green functiong exactly in section 2 and derive our many-
body CPA equation for the Green functionG in section 3. The CPA spectral function is studied
in section 4. In the limit of infiniteJ andn→ 1, Kubo [12] has introduced a CPA treatment
of holes and we compare our results with this in section 5. A formula for the resistivityρ of
the zero field paramagnetic state is derived in section 6 and in section 7ρ is calculated for
various approximations to the density of states (DOS). A summary is given in section 8.

2. Atomic limit

Since we require our approximation forG to be exact in the atomic limit we must first
deriveG in this limit. We define the retarded Green function for operatorsA andB with
no explicit time-dependence by〈〈A;B〉〉t = −iθ+(t)〈{A(t), B}〉 and its Fourier transform by
〈〈A;B〉〉ε =

∫∞
−∞ dteiεt 〈〈A;B〉〉t . Hereθ+(x) = 1 for x > 0 and 0 otherwise,ε is restricted to

the upper half of the complex plane, and [, ] and{, } are the commutator and anticommutator
respectively. The equation of motion for the latter Green function is

ε 〈〈A;B〉〉ε = 〈{A,B}〉 + 〈〈[A,H ] ;B〉〉ε . (2)

The σ -spin one-electron Green function is given byGij
σ (ε) = 〈〈ciσ ; c†

jσ 〉〉ε , and we define

Gσ = Gii
σ andGEkσ = N−1∑ ERij exp(iEk · ERij )Gij

σ where ERij is the vector from thej th to the

ith lattice site andN is the number of sites. The occupation number operators areniσ = c†
iσ ciσ

and we introduce the notationnαiσ , with α = ±, such thatn+
iσ = niσ andn−iσ = 1− niσ . We

also define the total occupation numberni = ni↑ + ni↓ andn+
i = ni , n−i = 1− ni . We denote

the Green functionGσ in the atomic limittij = 0 bygσ .
In the atomic limit the eigenstates and energy eigenvalues ofH are completely defined in

terms of those of the single-site Hamiltonian. In order of increasing energy these consist of
2(S +1/2)+1= 2S +2 singly occupied states with electron spin and local spin parallel having
energy−JS/2, 2S + 1 unoccupied states and 2S + 1 doubly occupied states with energy 0,
and 2(S − 1/2) + 1= 2S singly occupied states with electron spin and local spin antiparallel
having energyJ (S + 1)/2. g↑ is easily obtained using the equation of motion method. We
definegα↑ = 〈〈nαc↑; c†

↑〉〉, sα↑ = 〈〈nαSzc↑; c†
↑〉〉, andtα↑ = 〈〈nαS−c↓; c†

↑〉〉, dropping site indices
since the site referred to is always the same.S± andσ± are the raising/lowering operators for
the local spins and conduction electrons respectively. We start withgα and write equations of
motion for undetermined Green functions until the system of equations closes, obtaining

εgα↑(ε) =
〈
nα↓
〉− J

2

[
sα↑(ε) + tα↑ (ε)

]
(3a)

ε
[
sα↑(ε) + tα↑ (ε)

] = 〈Sznα↓ − αS−σ +
〉− Jα

2

[
sα↑(ε) + tα↑ (ε)

]− JS(S + 1)

2
gα↑(ε). (3b)

Now g↑ =
∑

α=± g
α
↑ , and solving (3a) and (3b) for gα we obtain

g↑(ε) = 1

2S + 1

[ 〈(S + Sz)n↓ − S−σ +〉
ε + J (S + 1)/2

+
〈(S − Sz)(1− n↓)− S−σ +〉

ε − J (S + 1)/2

+
〈(S + 1 +Sz)(1− n↓) + S−σ +〉

ε + JS/2
+
〈(S + 1− Sz)n↓ + S−σ +〉

ε − JS/2
]
. (4)
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It should be noted that for finiteS there are four peaks in the spectral function at energies
±J (S + 1)/2 and±JS/2; for S → ∞ the upper and lower pairs of peaks merge leaving
the familiar double-peaked spectral function. To obtaing↓(ε) from (4) we make the changes
nσ 7→ n−σ , Sz 7→ −Sz, S± 7→ S∓, σ± 7→ σ∓. The weight summed over spin in the lowest
band is(nS − 2〈 ES · Eσ 〉)/(2S + 1), and since〈ES · Eσ 〉 → nS/2 as the temperatureT → 0
for sufficiently largeJ the peak at−J (S + 1)/2 will have very little weight at reasonable
temperatures. Hence it will often be a good approximation to neglect the lowest band. The
total weight summed over spin in the lowest two bands is(2S + 2− n)/(2S + 1), so it is clear
that atij 6= 0 theory that becomes exact astij → 0 will give an insulator at half-filling.

3. CPA Green function

Our general strategy in this section follows that of Hubbard—we will retain occupation numbers
as operators rather than replacing them with their averages, but their commutators withH0

will be neglected where appropriate, corresponding to the frozen electron approximation of
the alloy analogy. Terms which are not multiplied bytij must be treated exactly in order to
obtain the correct atomic limit.

We splitGij

↑ into two components,Gij

↑ =
∑

α=±G
ijα

↑ whereGijα

↑ (ε) = 〈〈nαi ci↑; c†
j↑〉〉ε ,

corresponding to propagation through singly (α = −) and doubly (α = +) occupied sites.
Neglecting [nαi↓, H0] the equation of motion for each component is then given by

εG
ijα

↑ (ε) ≈
〈
nαi↓
〉 (
δij +

∑
k

tikG
kj

↑ (ε)

)
+
∑
k

tik

〈〈
δnαi↓ck↑; c†

j↑
〉〉
ε
− J

2

(
S
ijα

↑ (ε) + T ijα↑ (ε)
)
(5)

where we have introduced the Green functionsS
ijα

↑ (ε) = 〈〈nαi Szi ci↑; c†
j↑〉〉ε andT ijα↑ (ε) =

〈〈nαi S−i ci↓; c†
j↑〉〉ε and the notationδA = A − 〈A〉 for any operatorA. The second term

on the right-hand side of (5) is Hubbard’s scattering correction in which the deviation ofnαi↓
from its average is accounted for. The last term of (5) is more complicated than in the case
of the Hubbard model, containing the as yet undetermined Green functionsS↑ andT↑. These
correspond respectively to propagation of the electron as an↑-spin and, following spin-flip
scattering from a local spin, as a↓-spin; the presence ofT↑ will couple the equations forG↑
andG↓.

We first treat the scattering correction, splitting the relevant Green function into two
components,〈〈δnαi↓ck↑; c†

j↑〉〉ε =
∑

β=±〈〈δnαi↓nβk ck↑; c†
j↑〉〉ε . It is assumed thattii = 0, so

from (5) it may be seen that this Green function is needed only fori 6= k. The equations of
motion are, fori 6= k,

ε
〈〈
δnαi↓n

β

k ck↑; c†
j↑
〉〉
ε
≈
〈
δnαi↓δn

β

k↓
〉
δjk +

∑
l

tkl

〈〈
δnαi↓n

β

k↓cl↑; c†
j↑
〉〉
ε

−J
2

〈〈
δnαi↓n

β

k

(
Szkck↑ + S−k ck↓

) ; c†
j↑
〉〉
ε

(6)

where [nβk↓, H0] and all commutators involvingδnαi↓ have been neglected. This is consistent
with the strategy stated above. As a further approximation the first term on the right-hand side
of (6), a two-site correlation function, is dropped and we setn

β

k↓ ≈ 〈nβk↓〉 in the second term,
which corresponds to neglecting a second scattering correction.

The system of equations for the scattering correction is now closed apart from the last
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Green function in (6). In the equation of motion for this term we use the fact that

n
β

k (S
z
kck↑ + S−k ck↓) =

{
(Szkn

β

k↓ − βS−k σ +
k )ck↑ for β = +

ck↑(S
z
kn
β

k↓ − βS−k σ +
k ) for β = − (7)

and replaceSzkn
β

k↓ −βS−k σ +
k by its average in the Green function coming fromH0. Neglecting

two-site correlation functions and commutators ofδnαi↓ we obtain the equation of motion, for
i 6= k,
ε
〈〈
δnαi↓n

β

k

(
Szkck↑ + S−k ck↓

) ; c†
j↑
〉〉
ε
≈
〈
Szkn

β

k↓ − βS−k σ +
k

〉∑
l

tkl

〈〈
δnαi↓cl↑; c†

j↑
〉〉
ε

−Jβ
2

〈〈
δnαi↓n

β

k

(
Szkck↑ + S−k ck↓

) ; c†
j↑
〉〉
ε

−JS(S + 1)

2

〈〈
δnαi↓n

β

k ck↑; c†
j↑
〉〉
ε
, (8)

thus closing the system of equations for the scattering correction.
We solve (8) for the Green function on the left-hand side, substitute the result into (6),

and rearrange and sum overβ to obtain, again fori 6= k,〈〈
δnαi↓ck↑; c†

j↑
〉〉
ε
= g↑(ε)

∑
l

tkl

〈〈
δnαi↓cl↑; c†

j↑
〉〉
ε

(9)

whereg↑(ε) is the atomic-limit Green function presented in (4). In the appendix of [10]
Hubbard solved this equation in terms of〈〈δnαi↓ci↑; c†

j↑〉〉ε :〈〈
δnαi↓ck↑; c†

j↑
〉〉
ε
=
(∑

l

W
i↑
kl (ε)tli

) 〈〈
δnαi↓ci↑; c†

j↑
〉〉
ε

(i 6= k) (10)

whereWiσ
kl is defined by

Wiσ
kl (ε) = g̃klσ (ε)−

g̃kiσ (ε)g̃
il
σ (ε)

g̃iiσ (ε)
(11a)

g̃ijσ (ε) =
1

N

∑
Ek

exp(iEk · ERij )
gσ (ε)−1− tEk

. (11b)

It is easy to check Hubbard’s solution: from (11b) it may be shown thatgσ
∑

k tikg̃
kj
σ =

g̃
ij
σ − gσ δij and hence thatgσ

∑
l tklW

iσ
lj = Wiσ

kj − gσ δkj for i 6= k, and this can be used to
verify that substituting (10) into (9) does indeed give a solution.

As in Hubbard’s casẽgijσ is a zeroth order approximation toGij
σ in which both scattering

and resonance broadening corrections are neglected, and following Hubbard we make the self-
consistent replacementg̃ij↑ 7→ G

ij

↑ ; this is the essential self-consistency step of the CPA. From
(10) the scattering correction term in (5) is given by∑

k

tik

〈〈
δnαi↓ck↑; c†

j↑
〉〉
ε
= J↑(ε)

〈〈
δnαi↓ci↑; c†

j↑
〉〉
ε

(12)

whereJσ (ε) =
∑

kl tikW
iσ
kl (ε)tli . A result that will be useful later is

Jσ (ε) = ε −6σ(ε)−Gσ(ε)
−1 (13)

which holds if the self-energy6σ(ε) is local—as is expected for a CPA. This result may easily
be established by making Fourier transforms and usingG

ij
σ (ε) = N−1∑Ek exp(iEk · ERij )GEkσ (ε).

We now also define the useful quantity

Eσ (ε) = ε − Jσ (ε). (14)
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It remains to find expressions for the unknown Green functionsS↑ andT↑ in (5); since these
represent propagation as↑- and↓-spins respectively we neglect the commutators [nαi↓, H0]
and [nαi↑, H0] in the respective equations of motion:

εS
ijα

↑ (ε) ≈ 〈Szi nαi↓〉
(
δij +

∑
k

tikG
kj

↑ (ε)

)
+
∑
k

tik

〈〈
δ(nαi↓S

z
i )ck↑; c†

j↑
〉〉
ε
− J

2
δα+T

ijα

↑ (ε)

−J
2

〈〈
nαi
(
(Szi )

2ci↑ + Szi S
−
i ci↓

) ; c†
j↑
〉〉
ε

(15)

εT
ijα

↑ (ε) ≈ −α 〈S−i σ +
i

〉 (
δij +

∑
k

tikG
kj

↑ (ε)

)
+
∑
k

tik

〈〈(
nαi↑S

−
i ck↓ + α

〈
S−i σ

+
i

〉
ck↑
) ; c†

j↑
〉〉
ε

−J
2

(
αS

ijα

↑ (ε)− δα−T ijα↑ (ε) + S(S + 1)Gijα

↑ (ε)
)

+
J

2

〈〈
nαi
(
(Szi )

2ci↑ + Szi S
−
i ci↓

) ; c†
j↑
〉〉
ε
. (16)

The second terms on the right-hand sides of these equations are the scattering corrections; the
scattering correction in (15) is of the same form as in (5), but in (16) it is more complicated.
It is not clear what the average ‘zeroth order’ Green function should be here, but we have
chosen it to be−α〈S−i σ +

i 〉Gkj

↑ (ε) as this makes the first terms on the right-hand sides of (5),
(15), and (16) all of the same form; it turns out that this is necessary for the consistency of the
approximation. The last Green function in (15) and (16) involves higher order spin operators
and is in general unknown; this term must be treated using an approximation which is exact in
the atomic limit.

The scattering correction of (15) may be treated in the same way as that of (5); the only
difference is thatδnαi↓ is replaced byδ(nαi↓S

z
i ), hence∑

k

tik

〈〈
δ(nαi↓S

z
i )ck↑; c†

j↑
〉〉
ε
≈ J↑(ε)

〈〈
δ(nαi↓S

z
i )ci↑; c†

j↑
〉〉
ε
. (17)

It is less obvious how to treat the scattering correction of (16). Instead of giving a rigorous
derivation we proceed by analogy and make the apparently reasonable approximation∑
k

tik

〈〈(
nαi↑S

−
i ck↓ + α

〈
S−i σ

+
i

〉
ck↑
) ; c†

j↑
〉〉
ε

≈ J↓(ε)
〈〈
nαi↑S

−
i ci↓; c†

j↑
〉〉
ε

+ J↑(ε)
〈〈
α
〈
S−i σ

+
i

〉
ci↑; c†

j↑
〉〉
ε

(18a)

= J↓(ε)T ijα↑ (ε) + α
〈
S−i σ

+
i

〉
J↑(ε)G

ij

↑ (ε). (18b)

It will be seen later that this is consistent with the rest of the derivation, leading for instance
to a local self-energy as expected in a CPA.

The system of equations of motion is now closed apart from the Green function
〈〈nαi ((Szi )2ci↑ + Szi S

−
i ci↓); c†

j↑〉〉ε appearing in (15) and (16). In general we will have to write
more equations of motion to close the system. This is straightforward to do if we make
approximations analogous to those used to obtain the equations of motion forS↑ andT↑. Then
the Green functions〈〈nαi (Szi )mci↑; c†

j↑〉〉ε and〈〈nαi (Szi )m−1S−i ci↓; c†
j↑〉〉ε and the expectations

〈(Szi )mn−i↓〉 and〈(Szi )m−1S−i σ
+
i 〉 for m = 1, . . . , 2S are brought into the system of equations.

The resulting system of 4S + 1 equations per spin is complicated to solve self-consistently for
largeS however, so we will restrict ourselves to simple special cases in which we do not need
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any more equations of motion; in the next three subsections we will consider the paramagnetic
state in zero magnetic field for arbitraryS, the caseS = 1/2 for arbitrary magnetization, and
the case of saturated ferromagnetism for arbitraryS.

Our approximation scheme is now complete and is entirely self-consistent, i.e. all the
expectations appearing in the system of equations can be obtained from the Green functions
in the system via the relation [13]

〈BA〉 = −
∫ ∞
−∞

dε

π
f (ε − µ)Im 〈〈A;B〉〉ε (19)

wheref (ε) = 1/(1+exp(βε)) is the Fermi function andµ is the chemical potential. Also, since
all the approximations made above have been in terms proportional totij the approximation is
exact in the atomic limit for allS andn as required. The system is assumed to be homogeneous,
so we now drop the site indices of the expectations.

3.1. Paramagnetism

In the case of paramagnetism with zero fieldJ↑ = J↓. Hence after substituting (17) and (18b)
in (15) and (16), respectively, we can add the resulting equations so thatSijα andT ijα occur
only in the combinationSijα + T ijα:

ε
(
Sijα(ε) + T ijα(ε)

) = 〈Sznα↓ − αS−σ +
〉 (
δij +

∑
k

tikG
kj (ε)− J (ε)Gij (ε)

)

+

(
J (ε)− Jα

2

) (
Sijα(ε) + T ijα(ε)

)− JS(S + 1)

2
Gijα(ε). (20)

SinceSijα andT ijα also enter (5) asSijα +T ijα we have now closed the system. We substitute
(12) and (20) into (5) and rearrange to obtain

Gij (ε) =
(
δij +

∑
k

tikG
kj (ε)− J (ε)Gij (ε)

)
G̃(ε) (21)

whereG̃ is defined by

G̃(ε) =
∑
α=±

(E(ε) + αJ/2)(n/2)α + Jα/2〈 ES · Eσ 〉
(E(ε)− αJS/2) (E(ε) + αJ (S + 1)/2)

(22)

E(ε) = ε− J (ε) and(n/2)α = δα− +αn/2. The spin symmetry of the paramagnetic state has
been used to simplify the expectations appearing in (22).

Taking Fourier transforms and solving forGEk (21) becomes

GEk(ε) =
1

J (ε) + G̃(ε)−1− tEk
. (23)

Since in generalGEk(ε) = (ε − tEk − 6Ek(ε))−1 this implies that the self-energy is local,
6Ek(ε) = 6(ε), and so using expression (13) forJ (ε) (23) becomes

GEk(ε) =
1

ε − tEk −6(ε) + G̃(ε)−1−G(ε)−1
(24)

and for consistency in this equation we must haveG = G̃. The existence of this simple
self-consistency condition definingG is our main justification for the approximations made
for the scattering correction of (16). If the approximations are changed we will not obtain a
consistent expression defining a local self-energy.
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In the low density limitn→ 0 (22) reduces to

G(ε) = E(ε)− J/2
(E(ε) + JS/2)(E(ε)− J (S + 1)/2)

(25)

which is Kubo’s [14] equation for the paramagnetic state Green function as required.

3.2. TheS = 1/2 case for arbitrary magnetization

For S = 1/2 we have(Szi )
2 = 1/4 andSzi S

−
i = −1/2S−i for arbitrary magnetization, so the

last Green function in (15) and (16) may be simplified:〈〈
nαi
(
(Szi )

2ci↑ + Szi S
−
i ci↓

) ; c†
j↑
〉〉
ε
= 1

4
G
ijα

↑ (ε)−
1

2
T
ijα

↑ (ε) (26)

closing the system. Substituting the scattering corrections (12), (17), and (18b) into the
equations of motion (5), (15), and (16) the system of equations reduces to

E↑G
ijα

↑ = 〈nα↓〉λij↑ −
J

2

(
S
ijα

↑ + T ijα↑
)

(27a)

E↑S
ijα

↑ = 〈Sznα↓〉λij↑ −
J

8
G
ijα

↑ −
Jα

4
T
ijα

↑ (27b)

Eα↓T
ijα

↑ = −α〈S−σ +〉λij↑ −
J

4
G
ijα

↑ −
Jα

2
S
ijα

↑ (27c)

where

λijσ (ε) = δij +
∑
k

tikG
kj
σ (ε)− Jσ (ε)Gij

σ (ε) (28)

Eσ (ε) = ε−Jσ (ε), andEασ = Eσ+Jα/4. These equations can be solved using a similar method
to that of the previous subsection, with an analogous self-consistency condition occurring, and
the local Green function is given by

G↑(ε) =
∑
α=±

〈nα↓〉
(
E↑(ε)Eα↓(ε)− J 2/8

)− J/2(〈Sznα↓〉E−α↓ (ε)− α〈S−σ +〉E−α↑ (ε)
)

E−α↑ (ε)
(
Eα↑(ε)E

α
↓(ε)− J 2/4

) . (29)

The expectations〈nα↓〉, 〈Sznα↓〉, and〈S−σ +〉 may be calculated self-consistently using (27a)–
(27c) and (19).

If we setn = 0 (29) reduces to

G↑(ε) =
E↑(ε)E−↓ (ε)− J 2/8− J/2〈Sz〉E+

↓(ε)

E+
↑(ε)[E

−
↑ (ε)E

−
↓ (ε)− J 2/4]

. (30)

ForS = 1/2 the probabilities of a local spin being up or down are given byP(Sz = ±1/2) =
1/2 ± 〈Sz〉, and this fact may be used to show that (30) is equal to Kubo’s equation [14]
for G↑ in theS = 1/2 case. Agreement with Kubo’s approximation in the case of arbitrary
magnetization is a much more stringent condition on our CPA than agreement just in the
paramagnetic case, so this gives us confidence that our approximation is indeed a many-body
extension of Kubo’s.

3.3. Saturated ferromagnetism for arbitraryS

If we assume the existence of a saturated ferromagnetic state where all local spins and
conduction electron spins are aligned parallel to the positivez-axis substantial simplification
occurs. The expectations occurring in the↑- and↓-spin systems are given by〈
nα↓
〉 = δα− 〈

Sznα↓
〉 = Sδα− 〈

S−σ +
〉 = 0 (31a)〈

nα↑
〉 = δα− + αn

〈−Sznα↑〉 = −S (δα− + αn)
〈
S+σ−

〉 = 0 (31b)
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and the Green functionsGσ , Sσ , andTσ may be simplified using the relations

G
ij+
↑ = T ijα↑ = 0 S

ijα

↑ = Sδα−Gij

↑ (32a)

T
ij+
↓ = 0 S

ijα

↓ = −SGijα

↓ . (32b)

The higher order Green functions are given by〈〈
nαi
(
(Szi )

2ci↑ + Szi S
−
i ci↓

) ; c†
j↑
〉〉
ε
= S2δα−G

ij

↑ (33a)〈〈
nαi
(
(Szi )

2ci↓ − Szi S+
i ci↑

) ; c†
j↓
〉〉
ε
= S2G

ijα

↓ − Sδα−T ij↓ . (33b)

The system therefore closes without needing any more equations. After simplification the set
of equations of motion (for both spin types) reduces to(

E↑ +
JS

2

)
G
ij

↑ = λij↑ (34a)(
E↓ − JS

2

)
G
ij+
↓ = nλij↓ (34b)(

E↓ − JS
2

)
G
ij−
↓ = (1− n)λij↓ −

J

2
T
ij

↓ (34c)(
E↑ +

J (S − 1)

2

)
T
ij

↓ = −JSGij−
↓ (34d)

with the other equations satisfied automatically. Hereλ
ij
σ andEσ are defined as in the previous

subsection.
We can solve these equations in the same way as in the previous two subsections, with

the usual self-consistency condition similar to (24) applying, and the local Green functions are
given by

G↑ = 1

E↑ + JS/2
(35a)

G↓ = n

E↓ − JS/2 +
1− n

E↓ − JS/2− J 2S/2(E↑ + J (S − 1)/2)−1
. (35b)

The↑-spin Green function here is just the free Green function shifted in energy, as might be
expected. In then→ 0 limit these equations reduce to those of Kubo [14], providing a further
check on our approximation. It is shown in the next section that these Green functions are in
fact not consistent with the initial assumption of a saturated ferromagnetic state.

4. CPA spectral function

In this section we study the DOS, first for the saturated ferromagnetic state and then for the
paramagnetic state. We make the approximation of replacing the true DOSDc for a simple
cubic lattice with the elliptic DOS,De(ε) = 2/(πW 2)

√
W 2 − ε2 where 2W is the bandwidth.

For an elliptic DOS the free Green function is given byG0(ε) = 2/W 2(ε−√ε2 −W 2). Since
the self-energy6σ(ε) is local the full Green function is given byGσ(ε) = G0(ε − 6σ(ε)),
and it follows immediately thatJσ = W 2/4Gσ . The Green function equations therefore
become algebraic in this approximation, greatly simplifying the calculations. The elliptic
DOS is also a fairly good approximation to the true DOS, unlike the Lorentzian DOS
Dl(ε) = (W/π)/(W 2 + ε2) considered by Furukawa [3]. In the infinite dimensional limit of a
hypercubic lattice with nearest neighbour hopping—the scenario considered by Furukawa—it
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may be shown that the true DOS is a Gaussian if the hoppingtij is scaled as the inverse square
root of the number of dimensions [15]. With the scaling appropriate to three dimensions the
Gaussian DOS is given byDg(ε) = (3/π)1/2 exp[−3(ε/W)2]/W . These DOSs are compared
in figure 1.
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Figure 1. The DOSsDc,De,Dl , andDg plotted in units ofW .

4.1. Saturated ferromagnetism

We study the ferromagnetic state with complete spin alignment in the strong-couplingJ →∞
limit which is most favourable to ferromagnetism, shifting the energy origin by−JS/2 in order
to have the zero of energy in the lowest band. Equations (35a) and (35b) become

G↑ = 1/E↑ (36a)

G↓ = 1− n
E↓ + 2SE↑

. (36b)

The DOS of this state is plotted in figure 2 forS = 1/2 and variousn. Since the↑- and
↓-spin DOSs are nonzero for the same range of energies it is clear that consistent saturated
ferromagnetism does not occur within our approximation for anyn. It may easily be shown
that this is true for any finiteS. Since strong ferromagnetism is expected to occur in the DE
model for at least some parameter values this is a limitation of our approximation and suggests
that our CPA may not be very good at low temperatures. Of course in common with the usual
alloy CPA we cannot obtain a true Fermi liquid groundstate in our CPA—the imaginary part
of the self-energy does not vanish at the Fermi surface atT = 0—so we only expect our CPA
to describe the DE model well at finite (but not necessarily large) temperatures where this is
not a problem. The possibility of weak ferromagnetism occurring in our approximation will
be discussed elsewhere; preliminary work on the magnetic susceptibility has already appeared
in [7–9].

Note that the weights of the↑- and↓-spin bands here are 1 and(1−n)/(2S+1) respectively,
so in the classical spin limitS → ∞ there is no possibility of↓-spin weight occurring near
the Fermi level. In fact forS → ∞ the saturated state is always stable against spin reversal
but for finiteS this is not always the case [16].
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Figure 2. The ↑-spin (solid curve, independent ofn) and ↓-spin (dashed curves,n =
0, 0.25, 0.5, 0.75, DOS decreasing with increasingn) DOSs in the saturated ferromagnetic
state forS = 1/2 andJ = ∞. Energy units ofW are used.

4.2. Paramagnetism

We now consider the zero field paramagnetic state. It may be shown that〈 ES · Eσ 〉 → nS/2
asJ → ∞, and〈 ES · Eσ 〉 will be very near to this limit as long asJS & 2W . We make this
approximation in figure 3, in which the paramagnetic state DOS is plotted forS = 3/2 and
J = 4W for variousn; this has the effect of removing the weak band centred on−J (S + 1)/2.
It may be seen that asn increases from 0 the band nearJ (S + 1)/2 is reduced in weight and a
new band appears nearJS/2, until atn = 1 no weight remains in the band nearJ (S + 1)/2.
The weight in the band near−JS/2 is (S + 1− n/2)/(2S + 1) per spin, so ifJS is sufficiently
large to separate the bands (JS & 2W ) this band will just be filled atn = 1 producing a Mott
insulator, as discussed in section 2.

We can understand figure 3 by expanding (22) in partial fractions,

G(ε) = 1

2S + 1

∑
α=±

(
(S + 1)(n/2)α + 〈 ES · Eσ 〉

E(ε)− αJS/2 +
S(n/2)α − 〈ES · Eσ 〉
E(ε) + αJ (S + 1)/2

)
. (37)

Comparing this equation with (4) in the paramagnetic state we see thatG(ε) = g(E(ε)), and
sinceE(ε)→ ε astij → 0 it is clear how the bands centred on the peaks of the atomic limit
spectral function arise astij is switched on.

In the strong-coupling limitJ → ∞, which is taken with the energy origin shifted by
−JS/2, (37) simplifies to

G(ε) = (S + 1− n/2)/(2S + 1)

E(ε)
(38)

which corresponds to an elliptical band of weight(S + 1− n/2)/(2S + 1) and bandwidth
2W
√
(S + 1− n/2)/(2S + 1). The band-narrowing factor is expected to depend upon the

form of the bare DOS, as pointed out by Kubo [12], but it is interesting to note that ours is the
square root of the factor obtained by Brunton and Edwards [16] using a different method.

5. Comparison with the hole CPA

In [17] Kubo and Ohata used a canonical transformation to derive an effective HamiltonianH ′

for theJ →∞ limit of the DE model. They then mappedH ′ onto an effective HamiltonianH ′′
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Figure 3. The DOS in the paramagnetic state forS = 3/2, J = 4W , andn = 0, 0.25, 0.75 and
1. Energy units ofW are used.

for holes, in which conduction holes hop with spins aligned antiparallel to local spins(S+1/2).
In [12] Kubo studiedH ′′ for n = 1, using a dynamical CPA similar to hisn = 0 CPA mentioned
above. There is no obvious reason for one of these CPAs to be a better approximation than the
other, so we would like our many-body CPA to agree with both of Kubo’s approximations in
the appropriate limits. In this section we setn = 1 andJ = ∞ in ourS = 1/2 Green function
equation (29) and compare the result with Kubo’s hole CPA.

ForS = 1/2 Kubo’sn = 1 Green function is given by

G↑ = 3/2(Ẽ↓ + Ẽ↑) + (2Ẽ↓ + Ẽ↑)〈Sz + σ z〉 + 2(Ẽ↓ − Ẽ↑)〈Szσ z〉
2/3(2Ẽ↓ + Ẽ↑)(2Ẽ↑ + Ẽ↓)

(39)

whereẼσ (ε) = ε − 3W 2/8Gσ(ε). If we setn = 1 andJ = ∞ in (29) we obtain

G↑ = (E↓ + 3E↑)/4 + (E↓ +E↑)〈Sz + σ z〉/2 + (E↓ − E↑)〈Szσ z〉
E↑(E↑ +E↓)

. (40)

For n = 1 andJ = ∞ the relation〈Sz〉 = 〈σ z〉 holds, and we have used this to write both
expectations as〈Sz + σ z〉/2. Unfortunately the Green functions defined by (39) and (40) are
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not equal; this may be seen by considering the zero-field paramagnetic state where they reduce
to

G(ε) = 1/2

Ẽ(ε)
= 1/2

ε − 3W 2/8G(ε)
(41a)

G(ε) = 1/2

E(ε)
= 1/2

ε −W 2/4G(ε)
(41b)

respectively, and these equations correspond to bands with different widths. This appears to be a
limitation of our CPA, which we would ideally like to interpolate continuously between Kubo’s
CPAs. A possible explanation for this disagreement is our neglect of resonance broadening
corrections in section 3.

We could attempt to include resonance broadening corrections in our approximation by
writing more equations of motion for these terms. It is however difficult to find approximations
that give a closed set of equations for the new Green functions introduced without spoiling
the self-consistency of our approximation. An alternative is to use an interpolation scheme
containing arbitrary parameters which are chosen to yield as many correct moments of the
spectral function as possible [18].

We first note that an empirical modification of (14), of the form

E↑(ε) = ε − W
2

4

[
G↑(ε) +

1

2
G↓(ε)

]
(42a)

E↓(ε) = ε − 3W 2

8
G↓(ε) (42b)

maps (40) forG↑ onto Kubo’s equation (39). This modification is of the same type as Hubbard’s
resonance broadening correction to the strong coupling (U → ∞) limit of his model. This
suggests that we should introduce an interpolation formula forEσ which reduces to (42a) and
(42b) in the limitsn = 0 andn = 1, respectively. Unfortunately so far work along these lines
has not proved successful.

6. Resistivity formula

We now derive a formula for the DC resistivityρ of the paramagnetic state of our model, taking
into account the cubic symmetry of the crystal and the local nature of our approximation. The
Kubo formula [13] states that for a small electric field uniform in space but oscillatory in time
with frequencyω, EE(Er, t) = EE0 exp(−iωt), the conductivity tensorσµν(ω) is given in terms
of the current-current correlation function by

σµν(ω) = ine2

�mω
δµν +

iN�

ω

〈〈
Jµ; Jν

〉〉
ω

(43)

whereh̄ = 1,� is the unit cell volume,m and−e are the electron mass and charge respectively,
and the retarded Green function is used.EJ is the electric current density operator defined for
a homogeneous system by

EJ = − e

N�

∑
Ekσ
EvEknEkσ (44)

where the velocityEvEk = ∇EktEk. In our case the conductivity is a real scalar so from (43)

σ = −N� lim
ω→0

Im

[ 〈〈Jx; Jx〉〉ω
ω

]
. (45)
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Now from (44)

〈〈Jx; Jx〉〉ω =
e2

3(N�)2
∑
EkEk′σσ ′

EvEk · EvEk′
〈〈
nEkσ ; nEk′σ ′

〉〉
ω

(46)

so we need an approximation to the two-electron Green function〈〈nEkσ ; nEk′σ ′ 〉〉ω.
Since the self-energy is independent of momentum a reasonable approximation is to

assume that the irreducible vertex function is also independent of momentum. In infinite
dimensions where the self-energy is rigorously local the momentum-dependent contribution
of the irreducible vertex function vanishes. In this case the contribution of the vertex correction
to σ vanishes owing to the different parities ofEvEk andtEk in Ek, and we can evaluate the two-
electron Green function〈〈nEkσ ; nEkσ 〉〉iν in the bubble approximation, obtaining

1

β

∑
m

GEkσ (iωm +µ)GEkσ (iωm + iν +µ) (47a)

= 1

β

∫
dε
∫

dη
∑
m

AEkσ (ε)AEkσ (η)
(iωm +µ− ε) (iωm + iν +µ− η) (47b)

where the iωm’s are odd Matsubara frequencies and iν is an even Matsubara frequency and
the spectral representation of the one-electron Green function,AEkσ (ε) = −ImGEkσ (ε)/π , has
been used. The sum overm can be evaluated using Cauchy’s residue theorem, and following
analytic continuation to the real axis and a shift inη we obtain〈〈
nEkσ ; nEkσ

〉〉
ω
=
∫

dε
∫

dη
AEkσ (ε)AEkσ (η + ε)

ω − η [f (ε − µ)− f (ε + η − µ)] . (48)

In the paramagnetic stateG is T -independent if we assume〈ES · Eσ 〉 = nS/2. The Fermi
functions in (48) give the conductivityσ a weakT -dependence, but we neglect this dependence
and calculate atT = 0, considering our calculation to apply to theT > TC state however.
Equations (45), (46) and (48) then imply that

σ ≈ 2πe2

3N�

∑
Ek
Ev2
EkAEk(µ)

2. (49)

Now for the simple cubic bandtEk = −2t [cos(kxa) + cos(kya) + cos(kza)], wherea is the
lattice constant, and (49) can be simplified using Gauss’ theorem:

σ = 2πe2

3Na

∑
Ek
tEkφ(tEk) (50)

whereφ′(tEk) = AEk(µ)2. This is a legitimate definition sinceAEk depends onEk only throughtEk
in the local approximation. We introduce the cubic bare DOSDc(ε), and (50) becomes

σ = 2πe2

3a

∫
dεεDc(ε)φ(ε). (51)

IntegratingAε(µ)2 with respect toε it may be shown that

φ(ε) = 1

2π2

[
ε +6′(µ)− µ

(6′′(µ))2 + (ε +6′(µ)− µ)2 +
1

6′′(µ)
tan−1

(
ε +6′(µ)− µ

6′′(µ)

)]
(52)

where6′(µ) and6′′(µ) are the real and imaginary parts of6(µ) respectively.
If Dc(ε) is replaced with the GaussianDg(ε) corresponding to an infinite dimensional

approximation [15], (51) may be simplified by integrating by parts:

σ = πe2W 2

9a

∫
dεDg(ε)Aε(µ)

2. (53)

Note that this conductivity formula is of the same form as Furukawa’s [3].
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7. Resistivity calculations

In this section we will use formulas (51), (52) and (53) to calculateρ = σ−1, making simple
analytic approximations forDc(ε). Note that in SI units (51) and (53) must be divided by ¯h.

7.1. Elliptical DOS

We first calculateρ for the elliptical DOSDe(ε). We take the strong-coupling limitJ →∞
for simplicity; the precise value ofJ is unimportant in the strong-coupling regimeJS & 2W .
ρ is plotted againstn for variousS in figure 4. It may be seen thatρ correctly diverges at
n = 0 andn = 1, but the size ofρ and∂ρ/∂n for n ∼ 0.8 are much too small to explain
experiment, at least in some materials. For example Urushibaraet al [19], who measuredρ
for LanSr1−nMnO3, found (forT well aboveTC) thatρ ∼ 20 m� cm forn ∼ 0.8 and thatρ
drops by about an order of magnitude asn is reduced from 0.85 to 0.7. We therefore agree with
Millis et al [4] that the bare DE model does not explain the paramagnetic state of the CMR
materials. We also find that theT -dependence ofρ is always of the metallic∂ρ/∂T > 0 form
in our approximation, whereas Urushibaraet al find a crossover between metallic behaviour
atn = 0.7 to insulating behaviour atn = 0.85. It should be noted thatρ is independent ofW
here, and the size ofJ andS and the choice of resistivity formula (51) or (53), usingDe in
both cases, does not have a large effect.

0.0 0.2 0.4 0.6 0.8 1.0
Filling (n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
es

is
tiv

ity
 (

m
 O

hm
 c

m
)

Figure 4. The zero field paramagnetic state resistivityρ (in m� cm) versus fillingn, plotted for
J = ∞, a = 5 Å, andS = 1/2, 1, 3/2, 2, 5/2, and∞, ρ increasing withS. The elliptical DOS and
resistivity formula (51) are used.

7.2. Lorentzian DOS

In order to make contact with Furukawa’s work [3] we now consider the effects of
approximating the true cubic DOSDc(ε) with the LorentzianDl(ε), which is somewhat
less realistic than the elliptical DOS approximation owing to its slowly decaying tails. Our
equations are very simple in this case: it may be shown thatJ (ε) = −iW and our equations
for the Green function become explicit; switching onW here merely broadens the peaks of the
atomic limit spectral function into Lorentzians with the same width parameterW as the bare
DOS. Our approximation and Furukawa’s become very similar in this case; in the classical
S →∞ limit for example our local Green function is equal to Furukawa’s.
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The slowly decaying form of the Lorentzian means that the precise value ofJ has more
effect here than in the case of the elliptical DOS: the approximation〈 ES · Eσ 〉 ≈ nS/2 only holds
accurately for very largeJ and we only obtain a true insulator at half-filling forJ = ∞ for
instance. For simplicity however we take the limitJ → ∞ (with energy origin shifted by
−JS/2) rather than use the finite value used by Furukawa. In the paramagnetic state the local
Green functionG is then

G(ε) = S + 1− n/2
2S + 1

1

ε + iW
(54)

and the self-energy and chemical potential are

6(ε) = −
(

2S + n

2(S + 1)− n
)
(ε + iW) (55a)

µ = W tan

[
π

2

(
(4S + 3)n− 2(S + 1)

2(S + 1)− n
)]
. (55b)

If we use our finite-dimensional formula (51) to calculateρ with the Lorentzian DOS we
must use a mixed approximation to the DOS, calculatingφ using the Lorentzian approximation
but using the elliptic approximation forDc(ε), in order for the integral in (51) to converge. This
problem does not arise when using the infinite dimensional conductivity formula (53) soDl can
be used throughout. The choice of conductivity formula (51) (with mixed approximation) or
(53) does not qualitatively alter the results, but since the calculation using (51) has already been
published [8] we use (53) here. It also seems more satisfactory to use the same approximation
for the DOS throughout. We believe conductivity formula (51) to be more realistic however,
as it does not rely on the infinite dimensions approximation.

ρ is plotted againstn for variousS in figure 5. Note that the result is independent ofW .
As before we obtain insulating behaviour atn = 0 andn = 1, but nowρ and∂ρ/∂n are of the
same order of magnitude as experiment forn ∼ 0.8, and our results are also consistent with
those of Furukawa. Even better agreement can be obtained by reducingJ , which has the effect
of reducingρ and∂ρ/∂n for n ∼ 0.8. Furukawa’s result—that the DE model’s prediction
for ρ is of the same order of magnitude as the experimental value—is therefore due to the
unphysical approximation he used for the cubic DOS.
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Figure 5. The zero field paramagnetic state resistivityρ (in m� cm) versus fillingn, plotted for
J = ∞, a = 5 Å, andS = 1/2, 1, 3/2, 2, 5/2, and∞, ρ increasing withS. The Lorentzian DOS
and resistivity formula (53) are used.
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8. Summary

In addition to theoretical predictions of the properties of the DE model, experiments [6] also
suggest that coupling to lattice degrees of freedom is a necessary ingredient in a model of
CMR systems. However, we take the view that a good understanding of the bare DE model is
necessary before more accurate and complicated models can be tackled. Accordingly in this
paper we have presented a many-body CPA for the DE model and a compatible formula for
the resistivityρ. Our main result is the reconciliation of the calculations of Milliset al [4] and
Furukawa [3] ofρ in the paramagnetic state. We have confirmed that single-site scattering
within the DE model is inadequate to describe the resistivity of CMR systems.

Now the alloy CPA is known to give good results for a wide range of systems in which
localization effects are unimportant. This should be the case here since, although some authors
have claimed otherwise [20], localized states are expected to occur for the bare DE model only
in the tails of the band. We therefore expect our formulae forGσ to be good approximations.
Nevertheless several problems exist with our approximation. Firstly, in common with the usual
alloy CPA the imaginary part of the self-energy does not vanish at the Fermi level atT = 0
so we do not obtain a true Fermi liquid. This should not be important in the high temperature
paramagnetic regime that we have considered but the problem could perhaps be fixed following
the approach of Edwards and Hertz to the Hubbard model [21]. Secondly, we have shown
that for finiteS the saturated ferromagnetic state is never consistent in our approximation.
Real CMR systems are believed to exhibit strong ferromagnetism in some regimes, and it is
generally expected that the DE model has regions of strong ferromagnetism. Finally, although
we recover Kubo’sn = 0 CPA in the low-density limit, we do not recover his strong-coupling
n = 1 CPA [12] at half-filling. This appears to be a shortcoming of our approximation, possibly
due to our neglect of resonance broadening corrections. These problems and possible remedies
will be discussed in a later paper in which we will concentrate on the magnetic susceptibility
of our CPA.
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